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ABSTRACT
A new efficient and robust method of moment-

based formulation for the analysis of non-uniform, lossy
multi-line transmission structures is proposed.  The
stability and speed of this method are demonstrated by
analyzing different non-uniform structures.  The
performances obtained show the proposed approach to be
suitable for CAD applications.

INTRODUCTION
In today’s technological drive towards ever

higher performing microwave circuits and systems, non-
uniform transmission structures, both single and multiple
coupled lines, are being used more and more.  In recent
years, several different approaches have been proposed
for the analysis of these structures [1-4].  While single
non-uniform lines have received most of the attention,
resulting in several alternative modeling techniques, the
same cannot be said of multiple coupled lines where
significantly less work has been carried out and where no
CAD-suitable methods are available.  In fact, aside from
[1], where several piece-wise uniform multi-conductor
transmission line segments have been cascaded, or [2, 3],
where a moment method approach with spatially-fixed
basis functions has been suggested, little other literature
is available on the subject.  Moreover, both of these
approaches have limitations that make them impractical
CAD tools, particularly when analyzing a large number
of lines and at high frequencies.

In this paper a new efficient and robust approach
for the calculation of S-parameters of lossy, non-uniform
multi-line structures is proposed.  This approach is based
on the method of moments in the frequency domain with
a particular choice of the expanded variable and a special
set of basis functions that depend on the modal
propagation constants of the structure.  These functions
build-in the frequency dependence of the solution.  A
detailed description of the proposed approach is first
given then several results are presented and compared to

published results or to commercial circuit simulators.

FORMULATION
The distribution of the current and voltage waves

in coupled line structures is given by the well-known
telegrapher's equations:

( ) ( ) ( )

( ) ( ) ( )

∂
∂

∂
∂

V f z

z
Z f z I f z

I f z

z
Y f z V f z

j jk
k

k

N

j jk
k

k

N

,
, . ,

,
, . ,

= −

= −











=

=

∑

∑
1

1

 (1)

where a harmonic time dependence of frequency f has

been assumed and where ( )Z f zjk ,  and ( )Y f zjk ,
 
are

the entries of the frequency dependent per-unit length

impedance and admittance matrices ( )Z f z,  and

( )Y f z,  at a position z along the lines.  These matrices,

which are given in terms of the line-parameter matrices

( )R f z, , ( )L f z, , ( )G f z, , ( )C f z,  by

Z f z R f z j fL f z( , ) ( , ) ( , )= + 2π  and

Y f z G f z j fC f z( , ) ( , ) ( , )= + 2π , are assumed to

be known at some discrete positions along the
propagation axis z.

In [2, 3] a moment-method based approach was
proposed where both the current and voltage waves on
each conductor were expanded in terms of Chebychev
polynomial.  In [4], another method of moments-based
approach, which also expands both the current and
voltage waves, was proposed but with new frequency
varying basis functions made of forward and backward
propagating waves:
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The fact that both V  and I  are independently expanded
in terms of basis functions builds in redundancy in the
system since both quantities are already coupled through
the telegrapher’s equations.  The redundancy thus
introduced will lead, as will be shown below, to ill-
conditioned matrices.

In order to make full use of the coupling
between V  and I , a new method of moment approach is
proposed.  First, the two equations in (1) are combined
into a single second order differential equation in one of

the variables.  For the voltage vector V , this equation
reads:
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where Z , Y  and V  are frequency and z-dependent
quantities.
Second, a method of moments approach is used to solve

(3) where only ( )V f z,  is expended in terms of

forward, Fn , and backward, Bn , propagating waves as

follows:
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where an
j  and bn

j  are the unknown coefficients

associated with the nth basis function representing the
voltage on the jth line, and Ng  

is the number of forward

and backward waves used.  The frequency dependent
basis functions, Fn  and Bn , are given by

( ) ( )F z f en
f zn, = −γ

 and ( ) ( )B z f en
f zn, = +γ

.  The

set of ( )γ n f , n Ng= 1,... , corresponds to the

propagation constants of all the modes supported by the
N-line structure computed at different positions along the

z axis.  Since ( )γ n f
 

can in general be complex,

γ α βn n nj= + , the loss in the coupled lines is

automatically accounted for in the solution.
Next, substituting (4) into (3) we obtain:
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where 
( )

Z
Z f z

zp =
∂

∂
,

.

Finally, testing equation (5) with Fm and Bm (m=1,2.Ng-1),

leads to a system of 2N*(Ng-1) equations in 2N*Ng

unknowns.  The entries in this matrix equation are given
by the following inner products:

[ ]Z e en mz z± ±γ γ, , [ ]Z e ep
z zn m± ±γ γ,

 
and

[ ] [ ]Z Y e en mz z2 ± ±γ γ,  (6)

where ( ) ( )f g f z g z dz
L

, = ∫
0

 with L being the length

of the multi-line structure.
To complete the solution of the matrix equations

thus formed, boundary conditions must be applied.  Let

( )Z diag Z Z Zref ref ref ref
N0 01 02 0= , ,...  and

( )Z diag Z Z Zref
L

ref
L

ref
L

ref
LN= 1 2, ,...  be the normalizing

impedance matrices at z = 0 and z L= , respectively.
To compute the scattering parameters of the structure in
this reference system, a unit excitation voltage source is
placed sequentially at each port while all other ports are
terminated by their proper reference impedances.  For
each such configuration the system of 2N Ng*

equations is solved and the S-parameters are extracted

from the voltage solution by: S
V E

Eij
ij ij

ij

=
−2

 where

Vij  is the voltage at port i when port j is excited and Eij

is the excitation voltage, Eij = 1 when i j= , Eij=0,

when i j≠ .

RESULTS
To illustrate the accuracy, the efficiency and

robustness of the proposed approach, several  non-
uniform structures were analyzed.  First, a linear
microstrip line taper, with dimensions as shown in figure
1, has been analyzed to validate the approach.   The
results shown in figure 2 converge to those obtained
through the MDS[5] model  over the entire frequency
band with as little as three propagation constants.
Although this convergence behavior for single lines is
similar to that of the approach used in [4], i.e., three
propagation constants are also needed in [4], the resulting
matrix size is divided by two in the present approach.
Furthermore, the condition number of the resulting matrix
is several orders of magnitude better with the present
approach.  This leads to a much more robust matrix
solution.

However, the advantages of the present
approach can be best seen by considering multiple
coupled lines.  By expanding the voltage only, the
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number of unknowns is divided by two.  Since a full
matrix inversion is O(N3) operations, this will result in
reduction by 8 of the number operations.  Furthermore,
by eliminating redundancy from the system,  the
condition number of the resulting matrix is improved
significantly.  To illustrate this, consider the two coupled
microstrip lines analyzed by [3] and shown in figure 3.
Figure 4 shows the results obtained using the present
approach with 2, 3 or 4 basis functions.  The
corresponding results with both I and V expanded, as per
equation (2), are shown in Figure 5.  The resulting
reciprocal condition number is plotted in Figure 6 for
both cases.  Looking at Figures 4, 5 and 6, we clearly see
the superiority of the present approach in terms of its
rapid convergence, stability and improved condition
number in addition to the speed up resulting from using
half of the number of unknowns.  With such stability and
efficiency the present approach can be used as a CAD
tool for designing a wide range of microwave
components such as wide band couplers and filtering
structures.  Furthermore, its accuracy over a wide range
of frequencies, with relatively few basis functions, make
it attractive for non-uniform interconnect analysis both in
the frequency and time domains.  More results for three,
four and more coupled lines will be presented.
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Figure 1: geometry of tapered microstrip line
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Figure 2: Scattering parameters for the linear microstrip
taper of figure 1.
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Figure 3: Geometry of the two coupled microstrip lines
Er = 9.9, H= 10 mil, L= 11 mm, W(z) = (10 + 5z) mil,

S(z) = (35 – 3.75z) mil.
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Figure 4: Scattering parameters of the two coupled
microstrip lines with only V expended.
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Figure 5: Scattering parameters of the two coupled
microstrip lines with both V and I expended.

Figure 6: Reciprocal condition number of the two
described approaches.
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